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General principles of the Ewald method for evaluating multipole lattice sums are reviewed. The method 
is used to derive an expression for the Lorentz-factor dipole tensor sum in a form convenient for com- 
putation, and comparisons are made with the direct and plane-wise summation methods. Expressions 
are also given for computing quadrupole and octopole sums by the Ewald method. The effect of crystal 
symmetry on lattice sums is outlined; the number of independent sums relating different pairs of equiv- 
alent sublattices does not exceed the total number of such sublattices. Numerical results are given for 
the dipole lattice sums of hydrogen cyanide, benzene, durene, anthracene and pyrene. Quadrupole sums 
are given for cuprous chloride and pyrene, and octupole sums are given for hydrogen cyanide, benzene 
and anthracene. For dipole lattice sums, the Ewald method converges much faster than direct summa- 
tion; for higher multipole sums, the Ewald method has no special advantage in speed, but may prove 
convenient, especially when sums are required for strained lattices. 

Introduction 

Quantitative microscopic interpretation of many phys- 
ical properties of crystals requires a knowledge of 
some type of lattice sum. Calculations of the internal 
energies of crystals involve a wide range of lattice 
sums (charge-charge, dipole-dipole, quadrupole-qua- 
drupole, etc.), depending on the form of the potential 
function assumed (Born & Huang, 1954; Rae, 1969; 
Craig, Mason, Pauling & Santry, 1965; Aung & 
Strauss, 1973). Similarly, the interpretation of elec- 
tronic spectra of crystals requires the evaluation of 
dipole-dipole and higher-order lattice sums (Craig & 
Walmsley, 1963; Decius, 1968; Philpott & Lee, 1973; 
Frech, 1973). The response of crystals to electric 
fields as measured by their dielectric properties 
(Agranovich, 1974; Sinha, Gupta & Price, 1974; 
Bolton, Fawcett & Gurney, 1962; Tessman, Kahn & 
Shockley, 1953; Koikov & Rozova, 1967) or Stark 

* Present address: Department of Chemistry, University of 
Southern California, Los  Angeles, California 90007, U.S.A. 

spectroscopy (Hochstrasser, 1973; Dunmur & Munn, 
1975; Chen, Hanson & Fox, 1975) again requires a 
knowledge of appropriate lattice sums for its micro- 
scopic interpretation. The effect of static or dynamic 
strain on all these properties is principally due to 
changes in the lattice sums, which in turn may be 
expressed in terms of higher-order lattice sums. There 
is therefore ample reason for the continuing interest 
in methods for evaluating lattice sums of various 
types (Hove & Krumhansl, 1953; De Wette & Schacher 
1965; Bruesch & Lietz, 1970; Philpott, 1973; Aung & 
Strauss, 1973; Philpott & Mahan, 1973). 

Two basic approaches may be followed in evaluating 
lattice sums: summation of the appropriate function 
over all points of the direct lattice, or summation 
after transformation from the direct to some other 
lattice, usually the reciprocal lattice. There are however 
difficulties with either approach. Values of certain 
direct lattice sums are only conditionally convergent, 
and it becomes necessary to define a summation shape 
outside which all lattice points are excluded (Philpott & 
Lee, 1973; Burrows & Kettle, 1975). This problem 
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manifests itself in the transformed sum over the recip- 
rocal lattice as a singularity, such that the value of 
the sum depends on the direction from which the 
singularity is approached in reciprocal space (Aung & 
Strauss, 1973). 

Recent attention has mostly been focused on the 
Ewald method for evaluating dipole lattice sums (Born 
& Huang, 1954, p. 248), using either a two-dimensional 
transformation (plane-wise summation: Philpott, 1973) 
or the complete three-dimensional transformation 
(Aung & Strauss, 1973; Dunmur, 1972). The Ewald 
method splits a lattice sum into two parts, one summed 
over the direct lattice and one over the reciprocal 
lattice. Its advantage is that it assigns the singularity 
in reciprocal space to the macroscopic electric field, 
leaving sums which are absolutely convergent and 
hence free of the difficulty of shape-dependent results 
such as arise in direct dipole lattice summations. 

The formal extension of both two and three-dimen- 
sional Ewald-type transformations to the calculation 
of multipole lattice sums has recently been given 
(Au.ng & Strauss, 1973; Philpott & Mahan, 1973). In 
this and Part II of this series (Cummins, Dunmur, 
Munn & Newham, 1976) we consider specifically the 
lattice sums that arise in the calculation of lattice 
energies for molecular crystals and in the interpreta- 
tion of the static dielectric properties of crystals. In 
the present paper we give expressions, in a form suit- 
able for computation, for the sums giving the electric 
field due to a lattice of dipoles, quadrupoles or 
octupoles. Numerical results are presented for some 
crystals of interest. Although many of the results 
given here can be found in the literature, they are 
widely scattered, and appear in various apparently un- 
related forms. Our aim here has been to collect 
together the most useful formulae, to explain how they 
are related to other similar formulae, and to explain 
how they may be interpreted in physical terms where 
appropriate. We hope to help those who need to 
calculate simple multipole sums to do so without 
having to resort to extensive algebraic derivations. In 
Part II we show how the Ewald method can be used 
to calculate the more complicated lattice sums govern- 
ing the strain dependence of the permittivity and of 
lattice dipole-dipole energies. 

Lattice multipole sums 

(i) Principles 
The electric field in a crystal may be regarded as 

originating from two sources: charges and multipoles 
outside the crystal (including surface charges), and 
multipoles distributed over the crystal lattice. Field 
sources outside the crystal give rise to the macroscopic 
electric field, which depends on the size and shape of 
the crystal. Multipoles distributed over a crystal lattice 
may be permanent properties of the molecules or ions 
in the structure, or they may be induced by an electro- 
magnetic or lattice wave. In the former case, the 

permanent multipoles contribute to the internal energy 
of the crystal, while in the latter case the induced 
multipoles are interpreted as the microscopic response 
of the crystal to an electromagnetic field or lattice 
wave. 

In a compound lattice consisting of Z interpenetrat- 
ing sublattices, the position of a lattice point with 
respect to an arbitrary origin can be written as 

where 
r(l, k) = r(l) + r(k),  (1) 

r(l) = l~a~ + lza2 +/3as, (2) 

ai, a 2 and aa are the basic vectors of the unit cell, and 
/1,/2 and la are integers denoting the unit cell in which 
the point lies. The vector r(k) denotes the position of 
the kth site (sublattice) within this cell, and can be 
written as 

r(k)=c~(k)al + c2(k)a2 -I- ca(k)aa, (3) 

where cl(k), c2(k) and ca(k) lie between 0 and 1. If 
the crystal contains a distribution of multipoles, their 
value will depend on the sublattice on which they are 
situated. They will also in general be modulated in 
space with a wave of wave vector y. Hence the multi- 
pole M oo at the lattice site (l,k) can be written as 

M°'>(l,k;y)=M<")(k) exp 2niy. r(l ,k).  (4) 

Here the superscript n denotes the order of the multi- 
pole, taken as a 2"-pole; then for a monopole (charge) 
n=0,  for a dipole n =  1, for a quadrupole n=2,  and 
so on. With this choice, the tensor rank of the multipole 
is also n. Note that unless y = 0  the amplitudes M<")(k) 
required to produce a given distribution of multipoles 
M~")(l,k;y) depend on the choice of origin for r(/,k). 

The electric field at a point r due to a multipole 
at the lattice point (l,k) is given by 

F(r)=(1/4neo)T<"+~)[r(l,k)-r]. MC")(l,k;y), (5) 

where,the single dot denotes an nfold inner product 
of the tensors. The quantity T<")(r) is the nth derivative 
with respect to r of 1/r, which is usually called the 
2"-l-pole tensor and is of rank n; for example, the 
second-rank dipole tensor gives the field due to a 
dipole, which is a first-rank tensor (vector). The field 
at a point in a crystal due to an array of multipoles 
is given by summing equation (5) over I and k. Using 
equation (4) we can write this sum as 

F(r)=(1/eo) ~ { ~ Vt"+'lr(l,k)-rl -' 
k l 

× exp 2niy. r(l)/4n}. M<")(k) exp 2niy. r(k).  (6) 

The quantity in curly brackets is a lattice multipole 
sum, which may be evaluated for a general point in 
the crystal for arbitrary y. Most commonly one needs 
only the electric field at a particular sublattice point 
k' within the unit cell l=0 ,  in which case the limit 
of equation (6) as r - +  r(0,k') is needed. 
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The method of Ewald for evaluating lattice sums 
is described in detail by Born & Huang (1954, p. 
248). As explained in the Introduction, the method 
divides the sum in two parts, which are sums over 
the direct and reciprocal lattices respectively. The rela- 
tive size of the two parts is governed by an arbitrary 
inverse length C. After this transformation, the field 
at r can be written as 

F(r)=(1/eo) ~ { ~ (1/4~z)V("+l)(CH[C[r(l,k)-r[] 
k l 

× exp 2rciy. r(l) + (~z/vC2)G[~z21y(l) + yl2/C z] 

× exp 2~zi[y(l) + y].  [ r - r (k)] )} .  M(n)(k) 

× exp 2rciy. r(k).  (7) 

Here the functions H(x) and G(x) are defined as 

H(x)=(1 - e f t  x)/x (8) 

G(x)=exp ( - x ) / x ,  (9) 

and y(l) is a reciprocal lattice vector. Both H and G 
are rapidly decreasing functions of x, so that the 
transformed sum converges rapidly. The transforma- 
tion separates the weakly-damped oscillations which 
make the original series poorly convergent; in re- 
ciprocal space these oscillations are largely damped 
out. The rate of convergence can be optimized by 
varying C, but it is usually adequate to set C= 
~z~/2/v-~/3, where v is the unit cell volume. It can be 
shown that for a dipole sum over a simple cubic 
lattice, this choice of C makes the term in H for each 
l equal and opposite to the term in G for the same l, 
leaving the whole sum determined by the terms for 
1=0 (Frech, 1973). We now derive the form taken 
by equation (7) with this value of C for lattices of 
point dipoles, quadrupoles and octupoles. In each 
case we consider the field at the point (0,k) in the 
long-wavelength limit y - +  0, when a sublattice carries 
the same multipole at each point. 

(ii) Dipole lattice sums 
The electric field in a lattice of point dipoles is 

given by setting n= 1 in equation (7). In this case, the 
multipole tensor T (2) varies as r -3, while the number 
of dipoles in a sphere of radius r varies as r 3. As a 
result, the sum is only conditionally convergent as 
y--+ 0. Examination of equation (7) shows that it is 
the term in G for l=0 which is not well=behaved, 
being an irregular function of y in this limit. However, 
it has been shown (Born & Huang, 1954, p. 248) that 
this irregular part gives the macroscopic field E. The 
electric field in a lattice of dipoles as y ~ 0 may thus 
be written as 

F ( k ) = E +  ~ L(kk'). M(~)(k')/eo v . (10) 
k '  

The dimensionless Lorentz-factor tensor introduced 
previously (Dunmur, 1972) is the regular part of 

equation (7) evaluated in the limit r ~ r(0,k'). It can 
be expressed as 

L,~(kk')= H°~(kk ') + ~ '  {H,o[Rkk,(l)] 
l 

-G~o[Q(I)] cos 2Q(I).  Rkk,(0)} (1 l) 

where the sum over l excludes l=O, and 

Rkk,(l)=(~l/Z/vl/a)[r(l,k')-r(k)] , (12) 

Q(I) = rcl/2va/ay(l). (13) 

The expressions for H~o(R) and G~.B(Q) are given in 
the Appendix. 

The first term on the right-hand side of equation 
(11) is the contribution to the direct lattice sum for 
l=0 .  When k C k', H°B(kk ') becomes simply 
H,p[Rkk,(0)], but when k=k '  Rkk,(0) is zero and H, B 
would diverge. However, this divergence can be under- 
stood as the infinite self field at a dipole due to itself, 
which is actually part of the macroscopic field, as 
explained by Robinson (1973). As equation (10) shows, 
the Lorentz-factor tensor describes the difference be- 
tween the local field at a molecule and the macroscopic 
field, and this difference arises solely from dipoles 
other than the one considered. If therefore the field 
due to the dipole at (0,k) is subtracted from equation 
(7) before taking the limit r--~ r(O,k), it is found that 
H°tj(kk) is the regular function 

H°o(kk) = ½c~. (14) 

The tensor L(kk') is symmetrical both in its Cartesian 
components and in the indices k and k'. Its trace is 
unity, so that under isotropic symmetry it is diagonal 
with elements equal to one third, which gives by 
equation (10) the standard result of Lorentz for the 
local field in a polarized continuum. The summation 
in equation (l l) is absolutely convergent, its value 
being independent of the order in which the terms are 
taken. The Lorentz-factor tensor is therefore inde- 
pendent of shape, and the result corresponds to a 
dipole lattice sum for an infinite Crystal, with no 
points excluded. 

The quantity obtained by direct summation of the 
dipole tensor depends on the cavity shape defined 
implicitly or explicitly by the summation. For a spher- 
ical sample, the result is 

~ '  T(2)(l, kk')=(4zc/v)[L(kk')-½l], (15) 
( s p h e r e )  

where the last term is equivalent to the Lorentz 
cavity field. Dipole lattice sums have also been eval- 
uated by plane-wise summation (De Wette & Schacher, 
1965; Philpott, 1973). The field due to an infinite 
plane of dipoles falls off very rapidly with perpendicular 
distance from the plane, all but a few percent being 
contributed by the plane containing the point in ques- 
tion (Mahan & Obermair, 1969). Dipole lattice sums 
calculated by plane-wise summation correspond to 
summation over an infinitely extended slab. For such 
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a summation over planes with unit normal n, the 
result is 

~'T (2) (l, k k ' )=(4n /v ) [k (kk ' ) -nn] .  (16) 
( p l a n e s  .1. n )  

The plane-wise sums quoted by Philpott (1972) are 
opposite in sign to this, and a factor v/4n larger. The 
plane-wise sums quoted by Philpott (1973) are also 
opposite in sign, and more importantly have been 
converted to give energies of interaction of unit dipoles 
along the various molecular axes (see later). 

(iii) Quadrupole lattice sums 
The extension of the Ewald method for a lattice 

of quadrupoles is straightforward; the field at a point 
on sublattice k follows on setting n = 2  in equation 
(7). The sum in this case is regular as y - +  0, and in 
this limit the field is 

F~(k) = ~. L~,e,(kk')M~)(k')/eo v , (17) 
k '  

where the third-rank tensor L,~(kk ' )  is given by 

L.t~,(kk')= H°t~,(kk ') + ~ '  {H,0,[Rkk,(I)] 
l 

+G,e~[Q(I)] sin 2Q(I).  Rkk,(0)} • (18) 

Once again, the term for l=O in the direct lattice 
sum has been separated out. When k Ck ' ,  H°o~(kk ') 
is equal to H,~[R,,,(O)], but when k = k '  we have 
again to subtract the infinite self field of a quadrupole 
at itself before taking the limit r -+ r(O, k). The result is 

H°~(kk)  = O . (19) 

The expressions for H,o~(R) and G,~(Q) are given in 
the Appendix. 

The quantity L,~(kk ' )  has the dimensions of re- 
ciprocal length. It is related to the direct lattice sum 
of the quadrupole tensor by 

L,t~(kk,)=(v/4n) ~,-~ar~','r'(3> rl kk')  . (20) 
I 

It is symmetric in the indices afly but antisymmetric 
in k and k', so that L,B~(kk)=O. Quadrupole sums 
satisfy the condition 

L,~,(kk')=O , (21) 

which follows directly from the definition of the 
quadrupole tensor and can be regarded as an expression 
of Laplace's equation. 

(iv) Octupole lattice sums 
With n = 3  in equation (7), the field at a point on 

sublattice k due to an array of octupoles is obtained as 

L kk  M (k e v .  =B~( ) ~ )/0 (22) F,(k)= ~ , ca) , 
k '  

The limit y -+ 0 again poses no problems. The octupole 
lattice sum L~B~e(kk' ) is given by 

Ge.(kk')  = H%.(kk') + ~ '  {G~.[R~k.(I)] 
l 

+G,B~6[Q(I)] cos 2Q(l) .  Rkk,(0)}, (23) 

where H~B~6(R ) and G ~ ( Q )  are defined in the Ap- 
pendix, and by arguments similar to those used pre- 
viously 

0 H~,~(kk  ) = H~dRkk,(O)] (k ~ k') (24) 

H°Br6(kk ) = - (27~/ 5v 2/3) ((~tj(~ -t- O~r(~t~6 -t- (~6~t~) . (25) 

The dimensions of L~B~6(kk' ) are (length) -2. It is 
related to the direct lattice sum of T(4)(l, kk  ') by an 
equation similar in form to equation (20). It is sym- 
metric in the indices af176 and also in k and k'. Octupole 
sums satisfy the condition 

L,~,~(kk') = 0 .  (26) 

(v) Effect o f  crystal symmetry 
The symmetry of the crystal can have two effects 

on lattice multipole sums. For a given k and k' it 
may require certain components to be equal or zero, 
while for different pairs of sublattices k and k' it may 
require certain components to be equal or equal and 
opposite. 

The former effect is rather subtle, because the sums 
are functions of the vector r(k)-r(k'). When k = k ' ,  
the vector degenerates to a point, and each lattice 
sum must transform into itself under the operations 
of the crystal point group. The independent non-zero 
components can then be determined by standard 
means (Bhagavantam, 1966). However, when k ¢: k' the 
lattice tensor sum only possesses the symmetry of the 
crystal point group if the vector r(k)-r(k') transforms 
under the operations of the point group into itself 
or into another vector differing by a lattice vector r(l). 

The effect of symmetry in relating different pairs 
of sublattices is more straightforward. If the vector 
r(k)-r(k') is carried by an operation of the crystal 
space group into the vector joining another pair of 
sublattices (modulo a reciprocal lattice vector), then 
the two lattice sums are related. The relation is ob- 
tained by transforming the first lattice sum to new 
axes defined by the transformation matrix for the non- 
translational part of the space-group operation, using 
standard techniques for tensors (Temple, 1967). As a 
special case, lattice sums for k = k '  are the same for 
all k. These relationships ensure that the sum over 
all k and k' of a lattice sum, which is characteristic 
of the unit cell and hence of the whole crystal, satisfies 
the requirements of the point group symmetry. 

The relationships also reduce the number of pairs 
kk '  for which sums need to be calculated. Each sum 
is symmetric or antisymmetric in k and k' according 
to whether its rank is even or odd, so that for Z sub- 
lattices there are at most ½ Z ( Z - 1 )  independent sums 
with k 4: k'. For a particular k, there are Z -  1 different 
pairs kk '  with k ~ k ' .  If all sublattices are equivalent, 
there are Z -  1 ways of transforming k into a different 
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sublattice k", and Z - 2  ways of transforming k' into 
a sublattice different from k and k". The Z - 1  pairs 
kk'  can thus be transformed into ½ ( Z - 1 ) ( Z - 2 )  dif- 
ferent unordered pairs; together, these pairs exhaust 
the total ½Z(Z-1) .  It follows that there are only 
Z - 1  independent sums for k # k ' ,  to which all the 
others are related. There is one independent sum for 
k = k ' ,  so that for Z equivalent sublattices there are 
altogether Z independent lattice sums. These are con- 
veniently calculated by fixing k and allowing k' to 
take all values. It is important to note that although 
there are at most Z independent lattice sums in a 
crystal containing Z equivalent sublattices, the rela- 
tionships between these and the remaining ½Z(Z-1 )  
sublattice sums are determined by the symmetry opera- 
tions that relate the vectors r(k)-r(k'). Thus the de- 
pendent sublattice sums may differ from the related 
independent ones by having some elements opposite 
in sign or transposed in position. 

Numerical results and discussion 

We have calculated dipole, quadrupole, and octupole 
sums for a number of crystals of interest. In addition 
to using the Ewald method, we have also performed 
direct summations over a spherical volume. Satis- 
factory agreement was obtained (e.g. within 0.1% for 
the dipole sums). The test for convergence was that 
a fixed number of contributions to each sum should 
fall below a pre-set value; some care in applying this 
test is necessary, particularly in highly anisotropic 
lattices, since a series of small contributions may be 
followed by a much larger one when a new shell of 
lattice points is begun [defined by the largest of the 

integers ll, lz and 13 in equation (2)]. For the dipole 
sums, convergence to 1 part in 105 was obtained by 
summing the Ewald formula over a few hundred 
points, whereas the direct sum over a spherical volume 
required up to 35000 points to give convergence even 
to 1 part in 104 . For the other sums, the rates of 
convergence were more nearly comparable. 

Our results for Lorentz-factor tensors (dipole lat- 
tice sums) are given in Table 1; further details are 
given by Cummins (1974) and Newham (1975). The 
tetragonal modification of hydrogen cyanide has been 
the subject of lattice-energy studies, and our results 
agree with those deduced from the work of Rae (1969) 
(see also Munn & Newham, 1976). Anthracene is the 
most studied of molecular crystals, for which lattice 
sums have been used in exciton calculations (Craig & 
Walmsley 1963; Philpott 1972, 1973) and in dielectric 
theory (Cummins, Dunmur & Munn, 1973). Our re- 
suits may be compared with the plane sums of Philpott 
(1973) through equation (16). They are in exact agree- 
ment when transformed to the same axes if account 
is taken of the unit conversion factor 4•x 106 cm -1 
A/8.6104v. Our results for durene agree with those 
obtained by Chen et al. (1975) for analysing Stark 
spectroscopic measurements, except that in their 
L=( l t )  the last two figures appear to have been trans- 
posed. In benzene, the molecules occupy special posi- 
tions, with the result that 1-(kk') always transforms 
according t o  the full orthorhombic point group and 
there are only four different 1-(kk'). In pyrene, on the 
other hand, the molecules occupy general positions 
such that the vectors between the pairs of sublattices 
1 and 2 or 3 and 4 (related by inversion) have no 
special components. The result is that I_(12) and I_(34) 

Table 1. Lorentz-factor tensor components L,B(kk' ) referred to crystal axes (taken as abc' for anthracene, 
durene and pyrene) 

~P 
kk" xx xy xz yy yz 

Hydrogen cyanide 
11 0.3311 0 0 0.3311 0 

Anthracene 
11 0.1530 0 0.0162 0.8208 0 
12 1.2417 0 - 0.0158 0-3538 0 

Durene 
11 -0-1300 0 -0.2170 0.8464 0 
12 0.8352 0 0.2034 0.0614 0 

Benzene 
11 0.4207 0 0 0.0473 0 
12 0.3230 0 0 0.8443 0 
13 0.9695 0 0 --0.7587 0 
14 -0-2239 0 0 0.9359 0 

Pyrene 
11 -0-0736 0 -0"1321 0"4421 0 
12 1.2667 - 1"6776 0"6609 0"5109 -0"4891 
13 1.0789 0 0"1038 0.0026 0 
14 0"3961 0 -0.1191 0-7885 0 

ZZ 

0.3377 

0.0262 
-0-5955 

0.2836 
0.1034 

0"5319 
-0.1674 

0.7891 
0.2877 

0.6315 
-0.7776 
-0.0815 
-0.1846 
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do not transform according to the monoclinic point 
group and differ in the signs of their x y  and y z  com- 
ponents. 

Quadrupole lattice sums are zero if they transform 
according to a point group containing the inversion 
operation. The highest-symmetry point groups not 

b 

containing this operation are 23 and 43m. Cuprous 
chloride belongs to the 43m point group, with the 
copper and chlorine sublattices occupying special po- 
sitions. Hence there is only one non-zero component 
of the quadrupole lattice sum: 

L x y , ( l Z ) = 6 . 1 1 2 5 / a ,  

Table 3. Oetupole  tensor componen t  sums  
L ~ o ~ ( k k ' ) / A  -2 re ferred  to crys ta l  axes  ( taken  

as abc'  f o r  anthracene)  

~flyfi 11 
Hydrogen cyanide 

x x x x  -0.1545 
xxyy  0.0996 
xxzz  0.0550 
zzzz -0.1101 

Anthracene 
X X X X  

X X X Z  

where a is the conventional unit-cell dimension. There x x y y  
X X Z Z  

are also non-zero quadrupole sums for pyrene ,  for y y x z  

which our results are summarized in Table 2. The y y y y  

vector joining sublattices 1 and 2 has no special corn- yyzz 
ponents, and so all components L ~  (12) are non-zero; zzxz  
the components of L(3~(34) are equal to those of zzzz 
L(3~(12) in magnitude, with the sign changed for every Benzene 
time y occurs. The vector between sublattices 1 and x x x x  
3 has special x and z components, leaving non-zero x x y y  

X X Z Z  
components L~t~(13 ) only if (efiy) contains y once or yyyy 
three times. Conversely, the vector between sublattices yyzz 
1 and 4 has a special y component, leaving non-zero zzzz 
components L~e~(14) only if (efiT) contains y twice or 
not at all. All the sums satisfy the condition (21). 

Table 2. Quadrupole  tensor componen t  sums  
L~Br(kk ' ) /A -x  re ferred  to crys tal  abe' axes  f o r  

pyrene  

kk" 
e~y 12 13 14 
x x x  0-1708 0 -0"3476 
xxy  1.2204 -0.1599 0 
xxz  -0.4217 0 -0"1057 
yyx  - 0"6990 0 0"4724 
yyy -0-8529 0"1423 0 
yyz -0.2077 0 -0"0848 
zzx 0"5281 0 --0"1249 
zzy -0"3676 0.0175 0 
zzz 0'6294 0 0.1905 
xyz 0.5167 -0"0060 0 

All crystals have non-zero octupole lattice sums, a 
selection of which is given in Table 3. These sums 
give not only the field due  to a lattice of octupoles 
but also the energy of interaction of a lattice of 
quadrupoles. For benzene  our results agree with the 
quadrupole-quadrupole energy calculated by Craig et 
al. (1965). All the octupole sums satisfy the condition 
(26). 

The numerical results presented here illustrate the 
range of behaviour that multipol, e lattice sums can 
exhibit. In a number of bases the results give in explicit 
form information implicit in previous published work. 
The independent non-zero components of the multi- 
pole tensor sums are determined by the symmetry of 
the Bravais lattice about a point at a position (within 
a unit cell) defined by the vector between the pair 

0.1219 -0.1618 
-0.0087 0.0085 
-0.1210 0-4367 
-0.0009 -0.2750 
-0.0003 -0.0003 

0.2392 -0.3462 
-0.1183 -0.0906 

0.0090 -0.0082 
0.1192 0.3655 

kk" 
12 13 14 

0.1214 - 0.1991 0.1690 -0.4141 
-0.0415 0.2440 -0.1211 -0.2338 
-0.0799 -0.0450 -0-0479 0.6479 

0.1006 -0.1510 -0.1324 0-4278 
-0.0591 -0.0930 0.2535 -0-1940 

0.1391 0-1379 -0.2056 -0.4539 

of sublattices concerned. When the molecules are in 
general positions, as in pyrene, the pattern of com- 
ponents may thus differ considerably from that implied 
by the point symmetry of the lattice itself. 

The speed of the Ewald method in calculating dipole 
lattice sums has already been stressed. Another ad- 
vantage of the Ewald method over the direct method 
stems from the conditions L , , ( k k ' ) =  1 and equations 
(21) and (26). These are automatically satisfied for 
each lattice point in a direct summation, but not in 
the Ewald method, where part of the tensor for any 
one direct lattice point has been transformed into 
contributions at all reciprocal lattice points. As a 
result, the conditions are satisfied only to the extent 
that the slower of the two sums has converged. For 
quadrupole and octupole sums, the Ewald method has 
little advantage in speed over direct summation. How- 
ever, with the expressions given here it is convenient 
to use the Ewald method for quadrupoles and octu- 
poles if it is also to be used for dipoles. Moreover, 
the calculation of multipole lattice sums by the Ewald 
method for y # 0  provides a direct route to the strain 
dependence of lower multipole lattice sums, as de- 
scribed in Part II (Cummins, Dunmur, Munn & 
Newham, 1976). 

We thank the Science Research Council (U.K.) for 
Research Studentships (PGC and RJN). 

APPENDIX 

Here we collect the expressions for the quantities 
H~B..(R ) and G~..(Q) in equations (11), (18), and (22). 
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7/71/2 
H,B(R) = ~ 5  (3R~Ra-R26,a) (1 - e r f  R) 

+½ [ ( ~ 4  + -~2) R,RB - R2] exp ( -R2)  • 

(A1) 

G~o(Q)=(Q~QB/Q 2) exp (_Q2) .  (A2) 

n , e ~ ( R )  = [ 3( fi,aR.: + 3afRo,+ fi~Ra)R z 

- 15R~RaR~](1 - erf R) 

zW2 [ ( ~ 4  2)(fi~aR,+fi~,R~+fi,~R#) 
+2-~ +R-~ 

(l, 10 4) ] 
- - ~  + --~ + -R2-- R~R.R, exp ( - R 2 ) .  

(A3) 

G~Bv(Q) = (277/2/v~/3)Q~G~a(Q). (A4) 

7~3/2 
n~a,:~(R ) - 4v2/3R 9 [3R4(fi~/~c~v~ + t~,vt~ + t~#~o~ ) 

- 15R2(fi~t3R~Ro + fia~R~R, + fiy~R~R a 

+ fi~,RaR,: + fi~RBR6 + fitjoR~R~) 

+ 105R,RoR~R~](1 - erf R) 

( 1 5 1 0 4 )  
- - ~  + - ~  + ~ (~R~R,  + ~ R , R ~  

+ ~r~R~Ra + ~n~RaRr + ~rRaR~ + 6a~R~R~) 

/.105 70 28 8 )  ] 
+ ~ 1~ ~ + - ~  + - ~  + ~ R~g~R~R, 

x exp ( - R 2 ) .  (.45) 

G,a,:a (Q) = (2~z~/2/v~/a)QnG,a~(Q). (A6) 

In all these expressions, R - I R I  and Q - [ Q [ .  The 
results are consistent with those obtained by Leech & 
Pawley (1975). 
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